A GENERALITES

f est une densité de probabilité sur un intervalle I si :

f est continue et positive sur l'et $\int f(x)dx = 1$ (sur l'intervalle I)

Si X est une variable aléatoire continue qui a pour densité f

Alors pour tous réels a et b tels que a < b

P(
$$a \le X \le b$$
) = $\int_a^b f(x)dx$

BLOI UNIFORME

si a < b X suit une loi uniforme sur l' intervalle [a;b]

si X a pour densité:

$$f(x) = \frac{1}{b-a} \quad \text{si } x \in [a;b]$$

f(x) = 0 si x n' appartient pas l' intervalle [a; b]

si a < c < d < b alors p(c
$$\leq$$
 X \leq d) = $\frac{d-c}{b-a}$

on a alors
$$E(X) = \frac{a+b}{2}$$

D LOI NORMALE

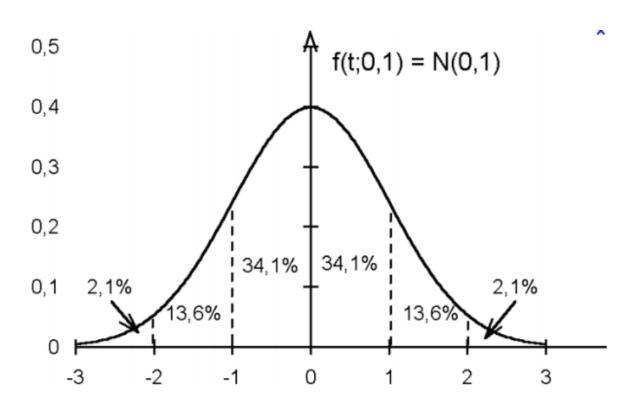
1) LOI NORMALE CENTREE REDUITE N(0; 1)

Définition

X suit une loi centrée réduite N(0; 1) si X a pour densité f définie sur R par

.
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Si P(a
$$\leq$$
 X \leq b) = $\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$



2) LOI NORMALE N(m; σ^2)

X suit une loi normale N(m ; σ^2) ssi Z = $\frac{X-m}{\sigma}$ suit une loi normale N(0 ; 1) On a alors E(X) = m et V (X) = σ^2 Si X suit une loi normale N(m ; σ^2)

Alors P(m- $\sigma \le X \le m + \sigma$) $\approx 0,68 \text{ à } 0,01 \text{ prés}$

 $P(m-2\sigma \le X \le m+2\sigma) \approx 0.95 \text{ à } 0.01 \text{ prés}$

 $P(m-3\sigma \le X \le m+3\sigma) \approx 0.997 \text{ à } 0.001 \text{ prés}$

Si a < m alors P(X < a) = 0.5 - P(a < x < m)

Si a > m alors P(X < a) = 0.5 + P(m < x < a)

Si a < m alors P(X > a) = 0.5 + P(a < x < m)

Si a > m alors P(X > a) = 0.5 - P (m < x < a)

E ECHANTILLONNAGE

pour un échantillon de taille n et si la probabilité d une propriété est p alors l intervalle de fluctuation à 95 % est :

$$\left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right]$$

L intervalle de confiance est :

$$\left[f-\frac{1}{\sqrt{n}};f+\frac{1}{\sqrt{n}}\right]$$