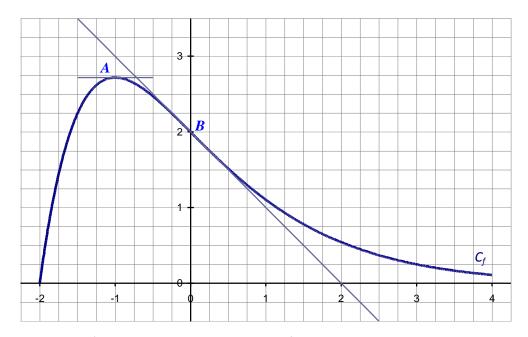
BACCALAUREAT GENERAL SESSION SEPTEMBRE 2009 MATHEMATIQUES SERIE ES

FRANCE METROPOLITAINE

TES INTEGRALES feuille 2

EXERCICE 1 (5 points)

On considère une fonction f définie et dérivable sur l'intervalle [-2;4].

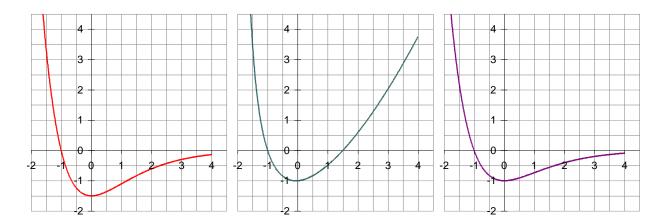

On note f' la fonction dérivée de la fonction f.

La courbe (C_f) tracée ci-dessous, représente la fonction f dans le plan muni d'un repère orthonormal d'unité graphique 2cm.

On note e le nombre réel tel que $\ln e = 1$. La courbe (C_f) passe par les points B(0;2) et A(-1;e).

Elle admet au point A une tangente parallèle à l'axe des abscisses.

La tangente (T) au point B à la courbe (C_f) passe par le point D(2;0).


- 1. En utilisant les données graphiques, donner sans justifier :
 - a. Le nombre de solutions sur l'intervalle [-2;4] de l'équation f(x)=1 et un encadrement d'amplitude 0,25 des solutions éventuelles.
 - b. La valeur de f'(-1).
 - c. Le signe de la dérivée f' de la fonction f sur l'intervalle [-2;4].
- 2. Dans cette question, toute trace de recherche même incomplète ou d'initiative même non fructueuse sera prise en compte dans l'évaluation.

Donner en justifiant :

- a. Le coefficient directeur de la tangente (T).
- b. L'encadrement par deux entiers naturels consécutifs de l'intégrale $\int_{-1}^{0} f(x) dx$.
- c. Celle des trois courbes (C_1) , (C_2) et (C_3) données en annexe qui représente la fonction dérivée f' de la fonction f.

BACCALAUREAT GENERAL SESSION SEPTEMBRE 2009 MATHEMATIQUES SERIE ES FRANCE METROPOLITAINE

ANNEXE DE L'EXERCICE 1

