TES GRAPHES feuille 147

Afin de se préparer à courir des marathons, Hugo aimerait effectuer quotidiennement un footing à compter du 1^{er} janvier 2014.

On admet que:

- Si Hugo court un jour donné, la probabilité qu'il ne coure pas le lendemain est de 0.2;
- s'il ne court pas un jour donné, la probabilité qu'il ne coure pas le lendemain est de 0,4.

On note C l'état « Hugo court » et R l'état « Hugo ne court pas ».

Pour tout entier naturel n, on note:

- c_n la probabilité de l'évènement « Hugo court le (n+1)-ième jour »;
- r_n la probabilité de l'évènement « Hugo ne court pas le (n + 1)-ième jour »;
- P_n la matrice (c_n r_n) correspondant à l'état probabiliste le (n+1)-ième jour.

Le 1er janvier 2014, motivé, le jeune homme court.

On a donc : $P_0 = (c_0 r_0) = (1 0)$.

- Traduire les données de l'énoncé par un graphe probabiliste de sommets C et R.
- Écrire la matrice de transition M de ce graphe en respectant l'ordre alphabétique des sommets.
- 3. On donne $M^6 = \begin{pmatrix} 0.750016 & 0.249984 \\ 0.749952 & 0.250048 \end{pmatrix}$.

Quel calcul matriciel permet de déterminer la probabilité c_6 qu'Hugo coure le 7^e jour?

Déterminer une valeur approchée à 10^{-2} près de c_6 .

- a. Exprimer P_{n+1} en fonction de P_n.
 - **b.** Montrer que, pour tout entier naturel n, $c_{n+1} = 0.2c_n + 0.6$.
- 5. Pour tout entier naturel n, on considère la suite (v_n) définie par $v_n = c_n 0.75$.
 - a. Montrer que la suite (v_n) est une suite géométrique de raison 0,2. Préciser le premier terme.
 - b. Exprimer v_n en fonction de n. Déterminer la limite de la suite (v_n).
 - c. Justifier que, pour tout entier naturel n, $c_n = 0.75 + 0.25 \times 0.2^n$.
 - d. Que peut-on conjecturer concernant la probabilité qu'Hugo coure le 29 décembre 2014?
 - e. Conjecturer alors l'état stable de ce graphe. Comment valider votre conjecture?