EXERCICE 3 (5,5 *POINTS*)

- 1) Soit f la fonction définie sur $]2;+\infty[$ par $f(x)=1-2x+\frac{1}{4-2x}$. On note C_f sa courbe représentative dans un repère du plan.
 - a. Calculer $\lim_{x\to +\infty} f(x)$.
 - b. Calculer $\lim_{\substack{x\to 2\\x>2}} f(x)$. En déduire l'existence d'une asymptote pour la courbe C_f
 - c. Montrer que la courbe C_f admet une deuxième asymptote d'équation y = 1 2x.
- 2) Soit *g* la fonction définie sur]2;+ ∞ [par $g(x) = \frac{2x+3}{x^2-4}$. Déterminer la limite en + ∞ du quotient $\frac{g(x)}{f(x)}$.

EXERCICE 4 (6,5 *POINTS*)

Soit f la fonction définie sur \Box par $f(x) = -x^3 - 2x^2 + 4x + 2$.

- 1) Étudier la limite de f en $-\infty$ et en $+\infty$.
- 2) On note f ' la dérivée de la fonction f.
 - a. Calculer f'(x).
 - b. Étudier le signe de f'(x).
 - c. Donner le tableau des variations de f. (Faire figurer les limites obtenues, ainsi que les valeurs des extremums de f)
- 3) Montrer que l'équation f(x) = 7 admet une solution unique α dans l'intervalle [-4; -3]. Donner, à l'aide de la calculatrice, une valeur arrondie de α au dixième près.