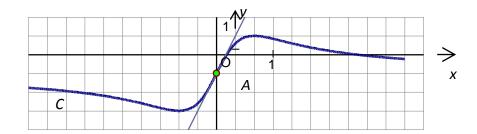
EXERCICE



La figure ci-dessus donne la représentation graphique d'une fonction f définie sur \square , dans un repère orthonormé. On note f' sa dérivée.

On sait que:

- La fonction f admet un minimum pour x = -1 et un maximum pour x = 1.
- La droite d'équation $y = -\frac{1}{2}$ est asymptote à la courbe au voisinage de ∞ et de + ∞.
- Le point $A\left(0;-\frac{1}{2}\right)$ appartient à la courbe (C) et que la tangente en A à la courbe passe par le point de coordonnées $\left(\frac{1}{2};\frac{1}{2}\right)$.

A partir du graphique et des renseignements fournis :

- 1. Déterminer, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 2. Déterminer, les valeurs de f'(-1), f'(0) et f'(1).
- 3. Déterminer une équation de la tangente en A à la courbe (C).
- 4. Etudier le signe de la dérivée f'.

EXERCICE 3

Soit f la fonction définie sur] -1; + ∞ [par : $f(x) = \frac{x^2 + x + 4}{x + 1}$.

On appelle C_f sa courbe représentative dans le plan muni d'un repère orthonormé.

- 1. Déterminer $\lim_{x \to -1^+} f(x)$, qu'en déduit-on pour la courbe C_f ?
- 2. Déterminer $\lim_{x \to \infty} f(x)$.
- 3. Montrer que C_f admet une asymptote Δ d'équation y = x. Étudier les positions relatives de la courbe C_f et de la droite Δ .
- 4. Calculer la dérivée de la fonction f.
- 5. Étudier les variations de f.
- 6. Donner une équation de la tangente T à la courbe C_f au point d'abscisse 0.
- 7. Tracer Cf et T et l'asymptote