EXERCICE 4 (4 points)

Dans chacun des cas suivants, calculer la dérivée de la fonction f

- 1. f est définie sur $]0; +\infty[$ par $f(x) = \frac{e^x + 1}{x}$
- 2. f est définie sur \mathbb{R} par $f(x) = e^x \frac{1}{e^x}$
- 3. f est définie sur \mathbb{R} par $f(x) = e^{x^2 x + 1}$

EXERCICE 5 (6,5 points)

Soit f la fonction définie pour tout réel x par $f(x) = (4-2x) \times e^{-0.5x}$.

On note f' la fonction dérivée de la fonction f et f'' la dérivée seconde de la fonction f.

- 1. a) Montrer que pour tout nombre réel x, on a : $f'(x) = (x-4) \times e^{-0.5x}$.
 - b) Étudier les variations de la fonction f.
- 2. Montrer que l'équation f(x) = 1 admet une unique solution α dans l'intervalle [0;2]. Donner une valeur arrondie à 10^{-2} près de α .
- 3. Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.
- 4. a) Étudier la convexité de la fonction f.
 - b) La courbe représentative de la fonction f a-t-elle un point d'inflexion? Si oui, donner ses coordonnées.