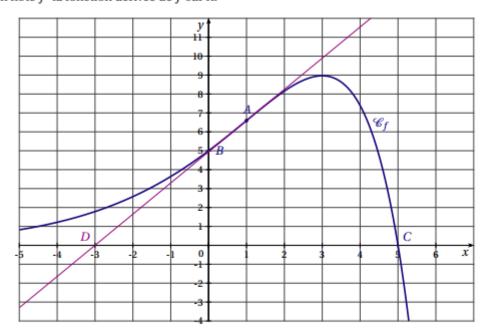
La courbe \mathscr{C}_f ci-dessous est la représentation graphique d'une fonction f définie et deux fois dérivable sur l'ensemble des nombres réels.

Elle passe par les points $A(1;4e^{0.5})$, B(0;5) et C(5;0).

Le point D(-3;0) appartient à la tangente à \mathscr{C}_f au point A.

On note f' la fonction dérivée de f sur \mathbb{R} .



Partie A - Par lecture graphique

- 1. Quel est le signe de f'(1) ? Justifier.
- **2.** Que semble représenter le point A pour la courbe \mathcal{C}_f ?
- 3. a. Préciser un domaine du plan dont l'aire est égale à $I = \int_0^3 f(x) dx$ unités d'aires.
 - b. Recopier sur votre copie le seul encadrement qui convient parmi :

$$0 \leqslant I \leqslant 9$$

$$10 \leqslant I \leqslant 12$$

$$20 \leqslant I \leqslant 24$$

Partie B - Par le calcul

On admet que pour tout réel x, $f(x) = (-x+5)e^{0.5x}$ et $f'(x) = (1,5-0.5x)e^{0.5x}$. On note f'' la fonction dérivée seconde de f sur \mathbb{R} .

- 1. a. Vérifier que, pour tout réel x, $f''(x) = 0.25(-x+1)e^{0.5x}$.
 - **b.** Résoudre l'équation f''(x) = 0. Montrer que le point A est un point d'inflexion de la courbe \mathcal{C}_f .
 - c. Sur quel intervalle la fonction f est-elle convexe? Justifier.
- **2.** Soit *F* la fonction définie, pour tout réel *x*, par $F(x) = (-2x + 14)e^{0.5x}$. On admet que *F* est une primitive de *f* sur \mathbb{R} .

Calculer $I = \int_0^3 f(x) dx$. On donnera la valeur exacte puis la valeur arrondie au centième.