
EXERCICE 2 (4 points)

La courbe C_f tracée ci-dessous est la représentation graphique d'une fonction f définie et dérivable sur \square . On note f 'la fonction dérivée de f.

- La tangente T à la courbe C_f au point A(0; 3) passe par le point B(1; 5).
- La droite D d'équation y = 1 est asymptote horizontale à la courbe C_f au voisinage de + ∞ .

- 1. En utilisant les données et le graphique, préciser :
 - a. La valeur du réel f (0) et la valeur du réel f '(0) .
 - b. La limite de la fonction f en + ∞ .
- 2. Déterminer une équation de la tangente T à la courbe C_f au point A.
- 3. Préciser un encadrement par deux entiers consécutifs de l'aire, en unités d'aire, de la partie du plan située entre la courbe C_f , l'axe des abscisses, l'axe des ordonnées et la droite d'équation x = 1.
- 4. On admet que la fonction f est définie, pour tout nombre réel x, par une expression de la forme $f(x) = 1 + \frac{ax + b}{e^x}$, où a et b sont des nombres réels.
 - a. Déterminer l'expression de f'(x) en fonction de a, de b et de x.
 - b. À l'aide des résultats de la question 1. a., démontrer que l'on a, pour tout réel x $f(x) = 1 + \frac{4x + 2}{e^x} \, .$
- 5. Soit *F* la fonction définie et dérivable sur \Box par $F(x) = x + \frac{-4x 6}{e^x}$. On admet que *F* est une primitive de *f* sur \Box .

Déterminer la valeur exacte puis une valeur approchée à 10^{-2} près de l'aire, en unités d'aire, de la partie du plan située entre la courbe C_f , l'axe des abscisses, l'axe des ordonnées et la droite d'équation x = 1.

Ce résultat est-il cohérent avec l'encadrement obtenu à la question 3 ?