Exercice 1 Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que f(x) = 3x + 1 et $g(x) = x^2 - 1$. A-t-on $f \circ g = g \circ f$?

Exercice 2 Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x/(1+x^2)$.

- f est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g: [-1,1] \rightarrow [-1,1]$ g(x) = f(x) est une bijection.
- 4. Retrouver ce résultat en étudiant les variations de f.

Exercice 3 On considère quatre ensembles A,B,C et D et des applications $f:A\to B,$ $g:B\to C,\,h:C\to D.$ Montrer que :

$$g \circ f$$
 injective $\Rightarrow f$ injective,

 $g \circ f$ surjective $\Rightarrow g$ surjective.

Montrer que :

 $(g \circ f \text{ et } h \circ g \text{ sont bijectives}) \Leftrightarrow (f, g \text{ et } h \text{ sont bijectives}).$

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{C}$ $t \mapsto e^{it}$. Montrer que f est une bijection sur des ensembles à préciser.

Exercise 5 Soit $f: [1, +\infty[\to [0, +\infty[$ telle que $f(x) = x^2 - 1$. f est-elle bijective?

- **Correction 2** 1. f n'est pas injective car $f(2) = \frac{4}{5} = f(\frac{1}{2})$. f n'est pas surjective car g = 2 n'a pas d'antécédent : en effet l'équation f(x) = 2 devient $2x = 2(1+x^2)$ soit $x^2 x + 1 = 0$ qui n'a pas de solutions réelles.
 - 2. f(x) = y est équivalent à l'équation $yx^2 2x + y = 0$. Cette équation a des solutions x si et seulement si $\Delta = 4 4y^2 \ge 0$ donc il y a des solutions si et seulement si $y \in [-1, 1]$. Nous venons de montrer que $f(\mathbb{R})$ est exactement [-1, 1].
 - 3. Soit $y \in [-1,1]$ alors les solutions x possibles de l'équation g(x)=y sont $x=\frac{1-\sqrt{1-y^2}}{y}$ ou $x=\frac{1+\sqrt{1-y^2}}{y}$. La seule solution $x \in [-1,1]$ est $x=\frac{1-\sqrt{1-y^2}}{y}$ en effet $x=\frac{1-\sqrt{1-y^2}}{y}=\frac{y}{1+\sqrt{1-y^2}}\in [-1,1]$. Donc pour $g:[-1,1]\longrightarrow [-1,1]$ nous avons trouvé un inverse $h:[-1,1]\longrightarrow [-1,1]$ défini par $h(y)=\frac{1-\sqrt{1-y^2}}{y}$. Donc g est une bijection.
 - 4. $f'(x) = \frac{2-2x^2}{1+x^2}$, donc f' est strictement positive sur]-1,1[donc f est strictement croissante sur [-1,1] avec f(-1)=-1 et f(1)=1. Donc la restriction de $f,g:[-1,1]\longrightarrow [-1,1]$, est une bijection.
- **Correction 3** 1. Supposons $g \circ f$ injective, et montrons que f est injective : soit $a, a' \in A$ avec f(a) = f(a') donc $g \circ f(a) = g \circ f(a')$ or $g \circ f$ est injective donc a = a'. Conclusion on a montré :

$$\forall a, a' \in A \quad f(a) = f(a') \Rightarrow a = a'$$

c'est la définition de f injective.

- 2. Supposons $g \circ f$ surjective, et montrons que g est surjective : soit $c \in C$ comme $g \circ f$ est surjective il existe $a \in A$ tel que $g \circ f(a) = c$; posons b = f(a), alors g(b) = c, ce raisonnement est valide quelque soit $c \in C$ donc g est surjective.
- 3. Un sens est simple (\Leftarrow) si f et g sont bijectives alors $g \circ f$ l'est également. De même avec $h \circ g$.

Pour l'implication directe (\Rightarrow) : si $g \circ f$ est bijective alors en particulier elle est surjective et donc d'après le deuxième point g est surjective.

Si $h \circ g$ est bijective, elle est en particulier injective, donc g est injective (c'est le 1.). Par conséquent g est à la fois injective et surjective donc bijective.

Pour finir $f = g^{-1} \circ (g \circ f)$ est bijective comme composée d'applications bijectives, de même pour h.