Exercice 5:

Soit (E) l'équation différentielle $y' + y = \frac{1}{2} e^{-x}$ où y est une fonction définie et dérivable sur R.

1° Résoudre l'équation (E_0) : y' + y = 0.

2° Soit h la fonction définie sur R par $h(x) = \frac{x}{2}e^{-x}$.

a) Montrer que h est une solution particulière de (E).

En déduire la solution générale de (E).

c) Trouver la solution particulière g de (E) telle que $g(0) = \frac{1}{2}$.

Exercice 6:

1° a) Résoudre l'équation différentielle : y' + y = 0.

b) Montrer que F est une solution particulière de l'équation différentielle (E) :

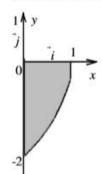
$$y' + y = (2x - 1)e^x$$
.

c) Déduire des résultats précédents les solutions de l'équation (E).

2° Soit h la fonction définie sur R par $h(x) = xe^x - e^x - e^{-x} = (x-1)e^x - e^{-x}$.

a) Vérifier que h est une solution de (E).

b) Étudier les variations de h sur [0, 1]. Établir le tableau de variation.



En déduire que h est négative sur [0, 1].

c) Calculer $\int h(x)dx$ (en effectuant une intégration par parties)

x d) Dans le plan rapporté à un repère orthonormé (O, i, j) (unité graphique 1 cm), on considère l'ensemble d des points M(x, y) tels que :

$$0 \le x \le 1$$
 et $h(x) \le y \le 0$ représenté ci-contre.

Calculer la valeur approchée, au mm2 près par défaut, de l'aire de d.

Exercice 4:

On veut résoudre sur R l'équation différentielle :

(1)
$$y' - 2y = -2x^2 - 2x$$

1° a) Vérifier que la fonction ϕ définie sur R par $\phi(x) = (x+1)^2$ est une solution particulière de (1).

b) Déterminer la solution générale de l'équation (1).

2° Déterminer la solution particulière de l'équation (1) qui s'annule pour x = 0.