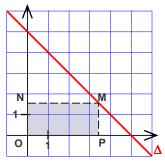
EXERCICE 5

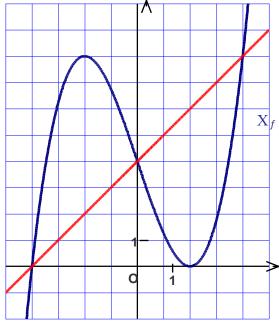
- 1. Soit f une fonction définie sur]0 ; 5[par $f(x) = \frac{25}{4} \left(x \frac{5}{2}\right)^2$.
 - a) Calculer $f\left(\frac{5}{2}\right)$.
 - b) Montrer que f admet un maximum sur]0; 5[.
 - c) On note X_f la courbe représentative de la fonction f. Tracer la courbe X_f dans un repère orthonormé (unités graphiques : 1 cm sur chaque axe).
 - d) Par lecture graphique, donner le tableau des variations de la fonction f.
- 2. Soit M un point de la droite Δ d'équation y=-x+5, d'abscisse $x\in]0$; 5[.
 - a) Exprimer en fonction de x, l'ordonnée du point M.
 - b) Exprimer en fonction de x l'aire A(x) du rectangle MNOP.
 - c) Vérifier que pour tout réel $x \in]0$; 5[, A(x) = f(x)].
 - d) En déduire la valeur de x pour laquelle l'aire A(x) du rectangle MNOP est maximale. Quelle est alors la nature du rectangle ?



EXERCICE 6

Soit f la fonction définie sur R par $f(x) = \frac{x^3}{4} - 3x + 4$, dont la courbe représentative X_f est donnée ci-contre.

La droite Δ d'équation y = x + 4 est la représentation graphique de la fonction affine g.



- 1. La droite Δ coupe la courbe X_f en trois points $A(x_A;0)$, $B(0;y_B)$ et $C(4;y_C)$. Calculer le plus simplement possible les coordonnées des points d'intersection. Les placer sur le repère.
- 2. A l'aide du graphique :
 - a) Dresser le tableau de variation de la fonction f.

Δ

- b) Résoudre l'équation f(x) = 0.
- c) Donner le nombre de solutions de l'équation f(x) = 4.
- 3. Résoudre dans R l'inéquation f(x) > 4.
- 4. Résoudre dans R l'inéquation $\frac{x^3}{4} 3x + 4 \le x + 4$. En déduire les positions relatives des courbes représentatives des fonctions f et g.