A FORME ALGEBRIQUE

1) définition

On considère un nombre imaginaire i tel que : $i^2 = -1$

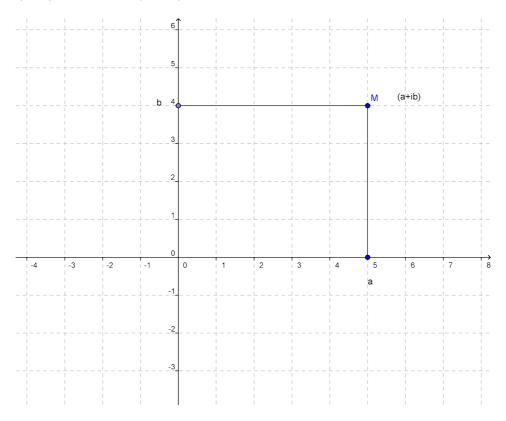
Un nombre complexe z est de la forme : z = a + ib où a et b sont des réels

l'ensemble des nombres complexes est noté ${m C}$

a est la partie réelle de z , on note a = Re(z) , b est la partie imaginaire de z , on note b = Im(z) si b = 0 alors z est réel , si a = 0 alors z est un imaginaire pur

2) affixe d' un point

Dans un repère orthonormé (O, \vec{u} , \vec{v}), le point M d' affixe a + ib est le point de coordonnées (a, b), on note M(a + ib)



3) conjugué d' un nombre complexe

Soit z = a + ib un nombre complexe, alors le conjugué de z noté \overline{z} est égal à :

$$\overline{z} = a - ib$$

si M a pour affixe z et M' a pour affixe \bar{z} alors M et M' sont symétrique par rapport à l' axe des réels

z est réel ssi $z = \overline{z}$

z est imaginaire pur ssi $\overline{z} = -z$

pour tout nombre complexe $z: z + \overline{z} = 2 Re(z)$ $z - \overline{z} = 2i Im(z)$

si z = a + ib alors $z \overline{z} = a^2 + b^2$, $z \overline{z}$ est un réel positif

application: $\frac{a' + ib'}{a + ib} = \frac{(a' + ib')(a - ib)}{a^2 + b^2} \quad (a + ib \neq 0)$

Quelque soient les nombres complexes z_1 et z_2

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} \quad (\quad z_2 \neq 0)$$

pour tout entier n : $\overline{z_1^n} = (\overline{z_1})^n$

4) équation du second degré

Soient a, b et c trois réel tels que $a \neq 0$

considérons l'équation : $az^2 + bz + c = 0$

$$\Delta = b^2 - 4ac$$

si $\Delta \ge 0$ alors voir le cours de 1 ere S

si $\Delta < 0$ alors l'équation admet deux racines complexes conjuguées

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a} \qquad z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$$

B FORME TRIGONOMETRIQUE

1) module d' un nombre complexe

Dans un repère orthonormé (O , \vec{u} , \vec{v}) , soit M un point d'affixe z alors le module de z noté |z| est égal à la distance OM

si
$$z = a + ib$$
 alors $|z| = \sqrt{a^2 + b^2}$

$$z\,\overline{z} = a^2 + b^2 = |z|^2$$

Quelque soient les nombres complexes z_1 et z_2

$$|z_1 \times z_2| = |z_1| \times |z_2|$$

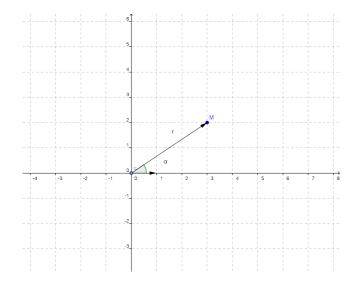
$$|(\frac{z_1}{z_2})| = \frac{|z_1|}{|z_2|}$$
 $(z_2 \neq 0)$

pour tout entier n $|z_1^n| = (|z_1|)^n$

$$AB = |z_A - z_B|$$

2) argument d' un nombre complexe non nul

Dans un repère orthonormé (O , \vec{u} , \vec{v}) , soit M un point d'affixe $z \neq 0$ On appelle argument de z noté arg(z) l'angle (\vec{u} , \overrightarrow{OM})



si $z \neq 0$ et z = x + iy alors

si
$$\alpha = \arg(z)$$
 alors $\cos(\alpha) = \frac{x}{\sqrt{x^2 + y^2}}$ et $\sin(\alpha) = \frac{y}{\sqrt{x^2 + y^2}}$

pour tous complexes non nuls z_1 et z_2 , pour tout entier n

$$arg(z_1 \times z_2) = arg(z_1) + arg(z_2)$$
 [2 \prod]

$$arg\left(\frac{z_1}{z_2}\right) = arg\left(z_1\right) - arg\left(z_2\right)$$
 [2]

$$arg(z_1^n) = n \times arg(z_1)$$
 [2]

3) forme trigonométrique d' un nombre complexe

si z est un complexe non nul de module r et d'argument α ,

alors la forme trigonométrique de z est: $z = r(\cos(\alpha) + i\sin(\alpha))$

4) forme exponentielle

soient α et β deux réels, alors $e^{i\alpha} = \cos(\alpha) + i \sin(\alpha)$

$$e^{i\alpha} \times e^{i\beta} = e^{i(\alpha+\beta)}$$
 $\frac{1}{e^{i\alpha}} = e^{i(-\alpha)}$ $\frac{e^{i\alpha}}{e^{i\beta}} = e^{i(\alpha-\beta)}$

pour tout entier relatif n : $(e^{i\alpha})^n = e^{in\alpha}$

si r = |z| et $\alpha = \arg(z)$ alors $z = r e^{i\alpha}$ (forme exponentielle)

formule de moivre : $(\cos(\alpha) + i\sin(\alpha))^n = \cos(n\alpha) + i\sin(n\alpha)$

formules d' euler : $\cos(\alpha) = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$

$$\sin(\alpha) = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$

CAPPLICATIONS GEOMETRIQUES

1) distance et angles

Dans un repère orthonormé (O, \vec{u} , \vec{v})

$$|z_B - z_A| = AB$$
 et si $A \neq B$ $\left| \frac{z_D - z_C}{z_B - z_A} \right| = \frac{CD}{AB}$

$$\arg(z_B - z_B) = (\vec{u}, \vec{AB}) \quad (A \neq B)$$

$$\arg(\frac{z_D - z_C}{z_B - z_A}) = (\overline{AB}, \overline{CD}) \qquad (A \neq B \text{ et } C \neq D)$$

2) translation

Soit t la translation de vecteur \vec{w} ,

soit M un point d'affixe z et M' d'affixe z' tel que M' = t(M) alors

$$z' - z = z_{\vec{w}}$$

3) homothétie

Soit h l' homothétie de centre Ω (ω) et de rapport k

soit M un point d'affixe z et M' d'affixe z' tel que M' = h(M) alors

$$z' - \omega = k(z - \omega)$$

4) rotation

Soit r la rotation de centre Ω (ω) et d'angle α

soit M un point d'affixe z et M' d'affixe z' tel que M' = r(M) alors

$$z' - \omega = e^{i\alpha} (z - \omega)$$