3^e NOM Prénom: Collège Les Pins d'Alep **A.N.**: */*12 Epreuve commune de mathématiques A.G. : /12 Vendredi 26 février 2010 Pb. : /12 La calculatrice est autorisée. P.R.: /4 Orthographe, présentation et rédaction seront notées sur 4 points Total: /40 Observations

Ce sujet est à rendre avec la copie Pensez à justifier vos réponses Attention, ce sujet comporte 4 pages !

Activités numériques (12 points)

Exercice 1

- 1) Sans aucun calcul, expliquer pourquoi on peut simplifier la fraction $\frac{4\ 114}{7\ 650}$.
- 2) Calculer le PGCD des nombres 4 114 et 7 650 avec la méthode de votre choix en détaillant les calculs.
- 3) Rendre irréductible la fraction $\frac{4114}{7650}$ en précisant votre méthode.
- 4) En utilisant les résultats des questions précédentes, mettre l'expression

A = $5\sqrt{4.114} - 4\sqrt{7.650}$ sous la forme $n\sqrt{34}$ où n est un entier relatif. Justifier votre réponse.

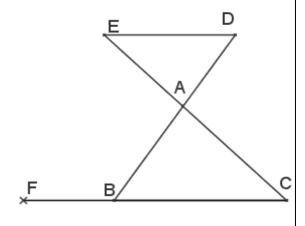
Exercice 2

Astronomix , jeune élève de collège passionné par l'astronomie, a lu dans un document très sérieux les données suivantes :

- La masse de la planète Vénus $M_V = 49 \times 10^{23} \text{ kg}$;
- La masse de la planète Jupiter $M_J = 317.8 \times M_T$, où M_T désigne la masse de la Terre ;
- La masse de la planète Vénus $M_V = 0.817 \times M_T$, où M_T désigne la masse de la Terre.
- $\frac{\text{masse Jupiter}}{\text{masse de Mars}} = \frac{M_J}{M_M} = 2 942,9 \text{ où } M_M \text{ désigne la masse de Mars.}$
 - 1) Donner sous la forme $a \times 10^{24}$ où a est un nombre réel qui doit être donné à 0,01 près par défaut, les masses en kilogramme des planètes suivantes :
- a) Terre
- b) Jupiter

- c) Mars.
- 2) Ranger les masses de toutes ces planètes dans l'ordre décroissant

Exercice 3 On considère l'expression $E = (\mathcal{X} + 1)^2 + (\mathcal{X} + 1)(2\mathcal{X} - 3)$

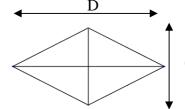

- 1. Développer et réduire E.
- 2. Calculer E pour $x = \frac{1}{2}$
- 3. Factoriser E.
- 4. Résoudre l'équation : $(\mathcal{X} + 1)(3\mathcal{X} 2) = 0$.

Activités géométriques (12 points)

Exercice 1:

Sur la figure ci-contre :

- (DE) et (BC) sont parallèles.
- AB = 8 cm et BC = 9 cm
- AC = 6 cm et AE = 4 cm
- 1) Calculer AD. On donnera sa valeur exacte puis sa valeur arrondie au millimètre.
- 2) Soit F un point de [CB) tel que BF = 6,5 cm. Les droites (EF) et (AB) sont-elles parallèles ? Justifier votre réponse.


Exercice 2:

On considère un cercle $\mathscr C$ de centre O et de diamètre 8 cm.

I et J sont deux points de $\mathscr C$ diamétralement opposés. K est un point de $\mathscr C$ tel que JK = 4cm.

- 1. Faire la construction dans le cadre ci dessous.
- 2. Préciser la nature du triangle IJK. Justifier.
- 3. Calculer IK. Donner le résultat sous la forme a $\sqrt{3}$ où a est un entier.
- 4. Préciser la nature du triangle OJK. Justifier.
- 5. a) Construire R le symétrique de K par rapport à la droite (IJ).
 - b) Démontrer que le quadrilatère ROKJ est un losange.
 - c) Calculer l'aire du losange ROKJ. Donner le résultat sous la forme b $\sqrt{3}$ où b est un entier.

Rappel: Aire du losange= $\frac{D \times d}{2}$

Problème (12 Points)

1ère partie

Le tableau suivant représente la hauteur des précipitations relevées mensuellement sur un atoll des Tuamotu en 2004.

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Jui	Août	Sep	Oct	Nov	Déc
Précipitations	200	175	120	0	95	110	110	90	85	10	140	155
(en mm)	200	173	120	0	90	110	110	90	0	10	140	133

- 1) Quel est le mois le plus sec?
- 2) Calculer la hauteur d'eau (total des précipitations) sur l'atoll en 2004.
- 3) Calculer la hauteur d'eau moyenne tombée en un mois.

2^e partie

Un habitant de cet atoll utilise la toiture de sa maison pour recueillir l'eau de pluie et la stocker dans un réservoir.

Vue du ciel, cette toiture a la forme d'un rectangle de 6 m par 10 m.

- 1) Calculer l'aire de ce rectangle en m².
- 2) On admet que le volume d'eau recueilli sur cette toiture est obtenu à l'aide de la formule suivante :

$$V = A \times h$$

où A est l'aire de la base (en m²) et h la hauteur d'eau tombée (en m).

Montrer que le volume d'eau tombé sur cette toiture pendant le mois de mars est de 7,2 m³.

Cette eau est stockée dans une cuve pouvant contenir toute l'eau des précipitations.
On rappelle que 1 m³ = 1 000 litres.
La consommation de cet habitant est de 300 litres d'eau par jour.

Calculer sa consommation pour le mois de mars. Le résultat sera donné en m³.

4) A la fin du mois de février, il restait 6,9 m³ d'eau dans la cuve. Quel volume d'eau reste-t-il à la fin du mois de mars ?

3^e partie

On s'intéresse maintenant au mois d'avril 2004.

Soit *x* le nombre de jours écoulés depuis le début du mois.

On admet que le volume d'eau restant dans la cuve au bout de x jours écoulés est donné par la formule :

$$V_{restant} = 4.8 - 0.3x$$

- 1) Calculer le volume restant dans la cuve à la fin du 7^e jour.
- 2) A quelle date ne reste-t-il plus que 0,9 m³ d'eau dans la cuve ? Justifier.
- 3) Cet habitant a-t-il pu subsister uniquement grâce à sa cuve jusqu'à la fin du mois d'avril ? Justifier.

4