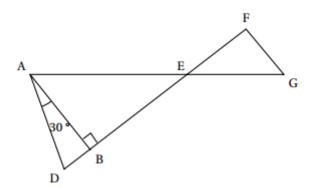
EXERCICE 1


L'unité de longueur est le centimètre.

- Construire un triangle DOS tel que DS = DO = 6 et ODS = 120 °.
 Quelle est la nature du triangle DOS? Justifier.
- 2. Dans le triangle DOS, tracer la hauteur issue de D. Elle coupe [OS] en H. On donne le tableau suivant :

x	sin x	cosx	tan x
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3

- Calculer la valeur exacte de OH.
- **b.** En déduire que OS = $6\sqrt{3}$.
- Placer le point M de [DS] tel que SM = 5. Tracer la parallèle à (OS) passant par M; elle coupe [DO] en N. Calculer la valeur exacte de MN.

Exercice 2

On sait que:

EF = 4 cm; FG = 3 cm; EG = 5 cm; AE = 7 cm; \widehat{DAB} = 30 °; les points A, E et G sont alignés; les points D, E et F sont alignés; (AB) est la hauteur issue de A dans le triangle AED.

On considère la figure ci-dessus (les dimensions ne sont pas respectées) :

- 1. Démontrer que EFG est un triangle rectangle.
- 2. En déduire que (FG) est parallèle à (AB).
- 3. Démontrer que EB = 5,6 cm et AB = 4,2 cm.
- 4. Dans le triangle DAB, montrer par le calcul que DB ≈ 2,4 cm.
- Calculer l'aire du triangle AED à 1 cm² près.