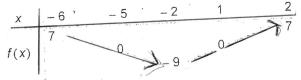
feuille 18

La fonction f, définie sur l'intervalle [- 6; 2], admet le tableau des variations ci-dessous



a) Comparer, si c'est possible, les nombres :

$$f(0)$$
 et $f(1)$; $f(-5)$ et $f(-3)$
 $f(-5,5)$ et $f(1,5)$:

b) Compléter le tableau de signes de f(x) selon les valeurs de x.

$$\begin{array}{c|c} x & -6 \\ \hline f(x) & \end{array}$$

Partie B

On considère la fonction g définie sur [-6;2] par :

$$g(x) = 4(x-1)^2 - 3(x-1)(x-3)$$
.

- 1° a) Développer et réduire g(x).
- b) Factoriser g(x).
- c) Vérifier que, pour tout réel x :

$$g(x) = (x+2)^2 - 9$$
.

- 2° Démontrer que la fonction g admet le même tableau des variations que la fonction f de la partie A et construire sa courbe représentative dans le plan muni d'un repère orthogonal.
- 3° a) Résoudre graphiquement les équations et inéquations suivantes:

$$g(x) = -5$$
; $g(x) > 0$; $g(x) < -8$.

b) Retrouver algébriquement les résultats précédents en utilisant l'expression de g(x) la plus adaptée.

Soient ABCD un carré de côté de mesure 5 et M un point de [BC]. On note:

- x = BM;
- P, Q et L les points des segments respectifs [CD], [DA] et [AB] tels que :

$$CP = DQ = AL = BM = x$$

On admettra que les quatre triangles hachurés ont la même aire.

- 1. Quel est l'ensemble I des valeurs possibles de x?
- Par la suite, x désigne un réel appartenant à I.
 - (a) Exprimer, pour tout réel x de I, AQ en fonction de x.
 - (b) Exprimer l'aire du triangle ALQ en fonction de x.
 - (c) En déduire l'aire f(x) du quadrilatère LMPQ en fonction de x.
 - (d) Montrer que f(x) peut aussi s'écrire sous la forme :

$$f(x) = 2\left(x - \frac{5}{2}\right)^2 + \frac{25}{2}$$

(a) Compléter, à l'aide de la calculatrice, le tableau de valeurs ci-dessous : On donnera les valeurs décimales exactes.

	^				,						
x	U	0,5	1	1,5	2	2.5	3	3.5	4	4.5	5
f(r)					12	-,-		0,0		3,0	3
1 (2)					13	1				1	

- (b) Tracer la courbe représentant f (unités : 2 cm pour 1 en abscisse, 0.5 cm pour 1 en ordonnées)
- (c) Déterminer graphiquement la valeur de x pour laquelle l'aire de LMPQ semble minimale. Quelle pourrait cette aire minimale?
- 4. (a) Exprimer, à l'aide de 2. (d), $f(x) f(\frac{5}{2})$.
 - (b) Montrer que, pour tout x dans I, $f(x) f(\frac{5}{2}) \ge 0$.
 - (c) En déduire que f admet un minimum et préciser la valeur en laquelle ce minimum est attaint

