Exercice 12

Dans un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points A et B dont les **coordonnées polaires** sont :

$$A(2;0)$$
 $B\left(2;\frac{\pi}{6}\right)$

On considère également le point C dont les **coordonnées cartésiennes** sont : $C(-\sqrt{3}; -1)$

- 1. Préciser, sans justification les coordonnées cartésiennes de A.
- 2. Calculer les coordonnées cartésiennes de *B*.
- 3. Calculer les coordonnées polaires de C.
- 4. Justifier que les points A, B et C sont sur un même cercle de centre O dont on précisera le rayon.
- 5. Placer, précisément, les points A, B et C sur une figure.
- 6. Quelle est la nature du triangle ABC ? (Justifier)

Exercice 13

Dans cet exercice, on dispose de la donnée suivante : $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.

1. Soit
$$x \in (0, \frac{\pi}{2})$$
 [.

Démontrer que :
$$\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan x}$$

2. En déduire que :
$$\tan \frac{5\pi}{12} = 2 + \sqrt{3} .$$

Exercice 14

- 1. Résoudre, dans $]-\pi$; π], l'équation : $\sin x = \sin(2x)$ Représenter les éventuelles solutions sur le cercle trigonométrique.
- 2. Existe-t-il un angle aigu θ , non nul, ayant même sinus que 2θ ?

Exercice 15

Dans cet exercice, on donne :
$$\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$

Calculer la valeur exacte de $\cos\left(\frac{2\pi}{5}\right)$ puis de $\cos\left(\frac{3\pi}{5}\right)$.

Exercice 16

- 1. Démontrer que, pour tout $x \in]0$; $\frac{\pi}{2}[$: $\tan x = \frac{1 \cos(2x)}{\sin(2x)}$
- 2. En déduire les valeurs exactes de $\tan \frac{\pi}{8}$ et $\tan \frac{\pi}{12}$.