durée: 1h30

DST Math.

1S2

le 17/12/2012

Répondre sur les feuilles prévues

Dans les deux exercices il y a des questions plus ou moins difficiles, mais l'ordre des questions n'est pas l'ordre de difficulté. Vous pouvez si nécessaire admettre le résultat d'une question et continuer l'exercice.

Exercice 1 (11 points)

On définit la suite $U=(u_n)$ par $u_n=\frac{6}{n^2+3n+2}$ pour tout $n\in N$

- 1. Calculer u_0, u_1, u_2 . La suite U est-elle arithmétique ? géométrique ?
- 2. Démontrer que la suite U est majorée par 3 et minorée par 0.
- 3. Démontrer que pour tout $n \in \mathbb{N}$, $u_n = \frac{6}{n+1} \frac{6}{n+2}$.
- 4. Étudier la limite de la suite (u_n) .
- 5. Démontrer que la suite (u_n) est décroissante.
- 6. Pour tout $n \in \mathbb{N}$, on pose $S_n = u_0 + u_1 + \cdots + u_n$. Calculer S_0, S_1, S_2 .
- 7. Démontrer que la suite (S_n) est croissante.
- 8. À l'aide de la question 3, démontrer que, pour tout $n \in \mathbb{N}$, $S_n = 6 \frac{6}{n+2}$.
- 9. En déduire la limite de la suite (S_n) .

Exercice 2 (9 points)

On définit la suite $U=(u_n)$ par $u_0=1$ et pour tout n, $u_{n+1}=2u_n+n+1$.

- 1. Calculer u_1,u_2,u_3 . La suite U est-elle arithmétique ? géométrique ?
- 2. On pose maintenant $v_n = u_n + n + 2$. Calculer v_0, v_1, v_2, v_3 .
- 3. Démontrer que, pour tout n, $v_{n+1} = 2v_n$.
- 4. En déduire l'expression de v_n en fonction de n.
- 5. Démontrer que, pour tout n, $u_n = 3 \times 2^n n 2$.
- 6. Étudier le sens de variation de U.
- 7. Calculer $S = u_0 + u_1 + u_2 + \dots + u_n$