Soit la suite numérique (u_n) définie sur N par :

$$u_0 = 2$$
 et pour tout entier naturel n , $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$.

- a. Calculer u₁, u₂, u₃ et u₄. On pourra en donner des valeurs approchées à 10⁻² près.
 - Formuler une conjecture sur le sens de variation de cette suite.
- 2. a. Démontrer que pour tout entier naturel n,

$$u_n \leq n+3$$
.

b. Démontrer que pour tout entier naturel n,

$$u_{n+1}-u_n=\frac{1}{3}(n+3-u_n).$$

- c. En déduire une validation de la conjecture précédente.
- 3. On désigne par (v_n) la suite définie sur N par $v_n = u_n n$.
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b. En déduire que pour tout entier naturel n,

$$u_n = 2\left(\frac{2}{3}\right)^n + n$$

- c. Déterminer la limite de la suite (u_n).
- **4.** Pour tout entier naturel non nul *n*, on pose :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$$
 et $T_n = \frac{S_n}{n^2}$.

- **a.** Exprimer S_n en fonction de n.
- **b.** Déterminer la limite de la suite (T_n) .