Exercice 2 : Angles (3 points)

Sur un cercle trigonométrique de centre O, les points A, B, C et D sont les images respectives des

réels 0;
$$\frac{\pi}{3}$$
; $\frac{3\pi}{4}$; $-\frac{\pi}{6}$

1°) Placer les points A, B, C et D sur le cercle.

2°) Donner une mesure en radian de chaque angle

a) $(\overrightarrow{OA}; \overrightarrow{OB})$

b) $(\overrightarrow{OC}; \overrightarrow{OD})$ c) $(\overrightarrow{OB}; \overrightarrow{OD})$

d) (\overrightarrow{BO} ; \overrightarrow{DO}

)

3°) Donner les sinus et cosinus de $(\overrightarrow{OA}; \overrightarrow{OB})$ et $(\overrightarrow{OB}; \overrightarrow{OD})$ 1pt

Exercice 3: Equations (3 points)

1.5pt 1°) Résoudre l'équation sin x = $-\frac{\sqrt{2}}{2}$ dans IR.

1.5pt 2°) Résoudre l'équation cos (2x)= $-\frac{1}{2}$ dans $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Exercice 5 : Calculs (3 points)

1°) Calculer la valeur exacte de cos ($\frac{13 \pi}{12}$) sachant que sin ($\frac{13 \pi}{12}$) = $\frac{\sqrt{2} - \sqrt{6}}{2}$ 1pt

2°) En déduire les valeurs exactes de cos ($\frac{7 \pi}{12}$) et sin ($\frac{19 \pi}{12}$) 2pts

Exercice 6: Formules (4.5 points)

1°) Montrer que : $\sin \frac{\pi}{8} - \sin \frac{3\pi}{8} + \sin \frac{5\pi}{8} - \sin \frac{7\pi}{8} = 0$

3pt 2°) Ecrire chaque expression en fonction de cos x ou sin x

> A = sin $(x + \frac{\pi}{2} + \pi) + \cos(x - \frac{\pi}{2} - \pi)$ a)

B = $\cos (\pi + x) + 2 \cos (-2 \pi + x) + 3 \cos (3 \pi + x)$ b)