91 Utilisation d'une suite auxiliaire

Soit la suite u définie sur $\mathbb N$ par :

$$u_0 = 1$$
 et pour tout entier n , $u_{n+1} = \frac{2u_n}{2 + 3u_n}$.

- \square Calculer les termes u_1 et u_2 .
- La suite u est-elle arithmétique ? géométrique ?
- El Tracer dans un repère orthonormé (unité : 5 cm) :
- la droite Δ : y = x;
- la courbe représentative de $f: x \mapsto \frac{2x}{2+3x}$;
- les premiers termes de u.

Quelles conjectures peut-on émettre sur les variations de la suite *u* ?

 \square On admet que, pour tout entier n, u_n n'est pas nul.

On définit la suite v sur \mathbb{N} par $v_n = \frac{2}{u_n}$.

- a. Calculer v₀, v₁ et v₂.
- **b.** Exprimer v_{n+1} en fonction de v_n . En déduire que la suite v est arithmétique (préciser la raison).
- c. Exprimer v_n , puis u_n en fonction de n.
- \blacksquare Étudier les variations de la suite u et comparer avec la conjecture de la question \blacksquare .

92 Utilisation d'une suite auxiliaire

On considère la suite u définie par $u_0 = 2$ et

pour tout entier naturel

$$n, u_{n+1} = 5 - \frac{4}{u_n}.$$

- \blacksquare Calculer u_1 , u_2 et u_3 .
- On représente ci-contre la courbe d'équation

$$y = f(x)$$

où f est la fonction

numérique, telle que pour tout entier n: $u_{n+1} = f(u_n)$.

- a. Déterminer la fonction f.
- b. Visualiser la suite u sur le graphique ci-dessus, et conjecturer:
- le sens de variation de la suite u;
- la limite éventuelle de la suite u.
- \blacksquare Pour tout entier n, on pose :

$$v_n = \frac{4 - u_n}{u_n - 1}$$

- a. Calculer vo, v1 et v2.
- Démontrer que la suite v est une suite géométrique dont on précisera la raison.
- c. Exprimer v_n en fonction de n.
- d. En déduire l'expression de u_n en fonction de n.
- Pour aller plus loin

Prouver la conjecture émise à la question \blacksquare b. sur les variations de u.