EXERCICE 2 (5 points)

Dans une zone de marais on s'intéresse à la population des libellules.

On note P_0 la population initiale et P_n la population au bout de n années.

Des études ont permis de modéliser l'évolution de P_n par la relation :

(R) Pour tout entier naturel
$$n$$
 on a : $P_{n+2} - P_{n+1} = \frac{1}{2} (P_{n+1} - P_n)$.

On suppose que P_0 = 40 000 et P_1 = 60 000.

On définit l'accroissement de la population pendant la n-ième année par la différence P_n $-P_{n-1}$.

- 1. Calculer l'accroissement de la population pendant la première année, la deuxième année, la troisième année, puis en déduire P_2 et P_3 .
- 2. On considère les suites (U_n) et (V_n) définies pour tout entier naturel n par :

$$U_n = P_{n+1} - P_n$$
 et $V_n = P_{n+1} - \frac{1}{2}P_n$

- a. Prouver que la suite (U_n) est géométrique. Préciser sa raison et son premier terme. Exprimer U_n en fonction de n.
- b. En utilisant la relation (R), calculer $V_{n+1}-V_n$. En déduire que, pour tout n, on a: $V_n=P_1-\frac{1}{2}P_0$. Calculer V_n .
- c. Démontrer que, pour tout entier naturel n, on a $P_n = 2(V_n U_n)$. En déduire une expression de P_n en fonction de n.
- d. Montrer que la suite (P_n) converge et calculer sa limite.

Que peut-on en déduire en ce qui concerne l'évolution de cette population au bout d'un nombre d'années suffisamment grand?