Exercice 1 (5 points)

On considère la suite $(w)_{n\geq 1}$ définie par : $w_n = \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{n+n}$

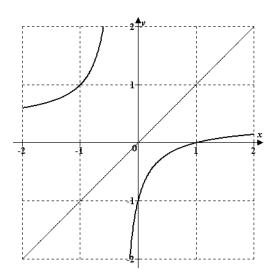
- **1°)** Calculer les valeurs exactes de w_1 , w_2 et w_3 .
- **2°)** Donner l'expression de w_{n+1} pour tout entier naturel n.
- **3°)** Déterminer la monotonie de la suite (w_n) .

Exercice 2 (5 points)

On a tracé, ci-contre, la courbe représentative de la fonction fdéfinie sur **R**\{-1/3} par : $f(x) = \frac{x-1}{3x+1}$.

Soit
$$u$$
 la suite définie par :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n - 1}{3u_n + 1}, & \text{pour tout } n \in \mathbf{N} \end{cases}$$

- 1°) En utilisant la droite (Δ) d'équation y = x et la courbe représentative de la fonction f, construisez, en justifiant, les termes u_1 , u_2 , u_3 et u_4 . Que remarque-t-on?
- **2°)** Déterminer, pour tout entier naturel n, une expression de u_{n+} ₂ en fonction de u_n .
- **3°)** Démontrer que, pour tout entier naturel n, on a : $u_{n+3} = u_n$.



Exercice 3 (5 points)

Pour chacune des propositions suivantes, indiquer si elle est vraie (V) ou fausse (F).

1°) Soit u une suite telle que, pour tout entier n, $u_n < 0$ et $\frac{u_{n+1}}{u} \ge 1$,

alors la suite u est décroissante.

- **2°)** Soit u une suite telle que, pour tout entier n, $u_n < 0$ et $u_{n+1} u_n \ge 0$, alors la suite *u* est croissante.
- **3°)** Soit u une suite arithmétique de premier terme $u_0 < 0$ et de raison r > 0, alors la suite u est décroissante.
- **4°)** Soit u une suite arithmétique de premier terme $u_0 > 0$ et de raison $r = \frac{1}{4}$, alors la suite *u* est croissante.
- **5°)** Soit u une suite définie par $u_0 > 0$ et pour tout entier n, $u_{n+1} = (u_n)^2$, alors la suite *u* est croissante.