f est la fonction définie sur **R** par $f(x) = \frac{-x^3 + 5x}{x^2 + 3}$

soit C sa courbe représentative dans un repère orthonormé (O, \vec{i} , \vec{j}) (unité 1 cm)

- 1) a) déterminer les réels a , b, c tels que $f(x) = ax + \frac{bx}{x^2+3}$
 - b) montrer que f est impaire, que peut -on en déduire pour C?
- 2) a) calculer la dérivée de f, montrer que f'(x) = $\frac{(x^2+15)(1-x^2)}{(x^2+3)^2}$
 - b) étudier les variations de f
 - c) calculer les limites de f en $+\infty$ et en $-\infty$
 - d) dresser le tableau de variations de f
- 3) démontrer que la droite Δ d' équation y = -x est asymptote oblique à C en $+\infty$ et en $-\infty$ étudier la position relative de C et Δ
- déterminer l'équation de la tangente T à C au point d'abscisse 0 et étudier la position relative de C et T
- 5) tracer C, Δ et T