Exercice 4 (8 points)

Soit f la fonction définie sur $\mathbb{R} \setminus \{-1; 1\}$ par :

$$f(x) = \frac{x^3}{x^2 - 1}$$

On note C_f sa courbe représentative dans un repère orthonormal.

1°) Etudier la parité de *f*.

En déduire que l'on peut restreindre l'étude de f à l'ensemble : D = $[0; 1[\cup]1; +\infty[$.

- 2°) Déterminer les limites de f en 1 et en $+\infty$. En déduire l'existence d'une asymptote à C_f sur D.
- **3°)** Démontrer que la droite Δ d'équation y = x est asymptote oblique à C_f en $+\infty$.
- 4°) Justifier que f est dérivable sur D et déterminer l'expression de sa fonction dérivée.
- 5°) Déterminer les variations de f sur D et en déduire le tableau de variations de f sur $\mathbb{R}\setminus\{-1;1\}$.
- **6°)** Tracer la courbe C_f (unité : 2 cm).

Christophe navarri

www.maths-paris.com