1 Pour chacune des fonctions suivantes, calculer la dérivée et en déduire les variations.

a.
$$f(x) = \exp x + 2x$$

b.
$$g(x) = -4 \exp x$$

Soit f la fonction définie sur \mathbb{R} par $f(x) = x \exp x$.

- 1. Conjecturer les variations de f à l'aide de la calcula-
- 2. Montrer que $f'(x) = (x + 1) \exp x$.
- En déduire les variations de f.

3 Pour chacune des fonctions suivantes, calculer la dérivée et en déduire les variations.

a.
$$f_1(x) = (x+2) \exp x$$
 b. $f_2(x) = 2(3-x)e^x$ **c.** $f_3(x) = x^2 \exp x$ **d.** $f_4(x) = (3-x^2)e^x$

b.
$$f_2(x) = 2(3-x)e^x$$

c.
$$f_3(x) = x^2 \exp x$$

d.
$$f_4(x) = (3 - x^2)e^x$$

Soit f la fonction définie sur] - ∞; 0[∪]0; +∞[par $f(x) = \frac{\exp x}{x}$. Déterminer les variations de f.

Résolution d'équations et inéquations

5 Résoudre les équations suivantes.

a.
$$\exp(4x) = \exp(2x + 4)$$
 b. $\exp(x - x^2) = 1$ **c.** $e^x - e^{-x} = 0$ **d.** $e^{4x} = 1$

b.
$$\exp(x - x^2) = 1$$

c.
$$e^x - e^{-x} = 0$$

d.
$$e^{4x} = 1$$

6 Montrer que l'équation exp(x) = 2 n'admet qu'une seule solution sur R puis déterminer un encadrement à 10⁻³ de la solution.

8 Écrire sous la forme e^k les expressions suivantes, où kest un entier relatif.

a.
$$e^{\frac{5}{2}} \times \sqrt{e}$$

b.
$$\frac{e^{-4}}{e} \times e^{10}$$
 c. $\frac{(e^2)^3}{e^4}$

c.
$$\frac{(e^2)^3}{e^4}$$

9 Simplifier les expressions suivantes. **a.** $e^{x+2} \times e^{3x}$ **b.** $\frac{e^{1-x}}{e^{3x+4}}$

$$a. \ e^{x+2} \times e^{3x}$$

b.
$$\frac{e^{1-x}}{e^{3x+4}}$$

c.
$$\frac{(e^{x-1})^2}{e^{2x}}$$

10 On souhaite résoudre $e^{2x} + e^x = 2$ (E).

- 1. Montrer que (E) équivaut à $(X^2 + X = 2)$ et $X = e^x$).
- Résoudre alors (E).

11 Soit
$$f(x) = 3e^{2x} - e^x - 2$$
.

- 1. Factoriser $3X^2 X 2$.
- Factoriser f(x) et en déduire son signe.