Exercice 2

Pour tout x, on pose : $g(x) = \frac{e^x + e^{-x}}{2}$ et $h(x) = \frac{e^x - e^{-x}}{2}$

- a) Démontrer que $[g(x)]^2 [h(x)]^2 = 1$
- b) Démontrer que $g(2x) = 2[g(x)]^2 1$ et que $h(2x) = 2g(x) \times h(x)$.
- c) Comparer ces relations avec les fonctions sinus et cosinus.

Équations et inéquations

Exercice 3

Résoudre dans R les équations suivantes :

1)
$$e^{3-x} = 1$$

2)
$$e^{2x^2+3} = e^{7x}$$

1)
$$e^{3-x} = 1$$
 2) $e^{2x^2+3} = e^{7x}$ 3) $2e^{-x} = \frac{1}{e^x + 2}$ 4) $e^{x^3} = e^8$

4)
$$e^{x^3} = e^8$$

5)
$$e^{x+1} = e^{\frac{1}{2}}$$

6)
$$e^{\sin x} = e^{\frac{1}{2}}$$

5)
$$e^{x+1} = e^{\frac{1}{x}}$$
 6) $e^{\sin x} = e^{\frac{1}{2}}$ 7) $e^{x^2} = (e^2)^3 e^{-x}$ 8) $e^{x^2} = e^{x-2}$

8)
$$e^{x^2} = e^{x-x}$$

Exercice 4

Résoudre dans R les inéquations suivantes :

$$1) \ e^{x^2} \leq \frac{1}{e^2}$$

2)
$$(e^x)^3 \le e^{x+6}$$

$$3) e^x \leq \frac{1}{e^x}$$

4)
$$(e^x - 1)e^x > e^x - 1$$
 5) $e^{2x} < e^x$

5)
$$e^{2x} < e^x$$

6)
$$3(e^x)^2 + e^x - 4 < 0$$

Exercice 5

Déterminer les dérivées des fonctions suivantes :

1)
$$f(x) = (x^2 - 2x)e^x$$

$$2) \ f(x) = \frac{1}{x}e^x$$

1)
$$f(x) = (x^2 - 2x)e^x$$
 2) $f(x) = \frac{1}{x}e^x$ 3) $f(x) = \frac{e^x - 1}{2e^x + 1}$

$$4) \ f(x) = \frac{e^x}{e^x - x}$$

4)
$$f(x) = \frac{e^x}{e^x - x}$$
 5) $f(x) = x^2 - 2(x - 1)e^x$

Fonction eu

Exercice 10

Déterminer les fonctions dérivées suivantes :

$$1) \ f(x) = xe^{\frac{1}{x}}$$

$$3) \ f(x) = \cos x e^{\sin x}$$

2)
$$f(x) = 2(x-1)e^{x-1}$$

4)
$$f(x) = e^{\frac{1+x}{1+x^2}}$$