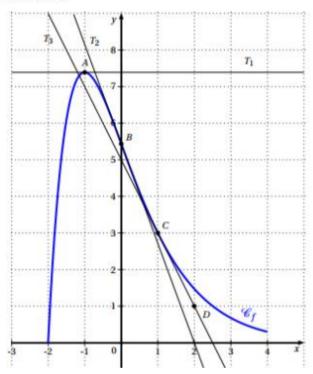
PARTIE A

Dans le repère ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur l'intervalle [-2; 4] ainsi que plusieurs tangentes à \mathscr{C}_f :

- T₁ est la tangente au point A de coordonnées (-1; e²),
- T₂ est la tangente au point B de coordonnées (0 ; 2e),
- T₃ est la tangente au point C de coordonnées (1; 3).

On sait que la tangente T_1 est parallèle à l'axe des abscisses et que la tangente T_3 passe par le point D de coordonnées (2 ; 1).



- Déterminer f'(−1) et f'(1).
 - Déterminer une équation de la tangente à la courbe \(\mathscr{C}_f\) au point C.

PARTIE B

On admet que la fonction f de la partie A est définie, pour tout réel x de l'intervalle [-2;4], par :

$$f(x) = (x+2)e^{-x+1}$$

On note f' la fonction dérivée de f.

- 1. Montrer que, pour tout x de l'intervalle [-2; 4], on a $f'(x) = -(x+1)e^{-x+1}$.
- Étudier le signe de f'(x) sur l'intervalle [-2; 4] puis dresser le tableau de variations de f sur cet intervalle.