EXERCICE 3 5 points

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = (x^2 - 2, 5x + 1)e^x$.

- On note f' la fonction dérivée de f.
 - **a.** Montrer que, pour tout réel x, $f'(x) = (x^2 0.5x 1.5)e^x$.
 - **b.** Étudier les variations de f sur \mathbb{R} .
- On note \(\mathscr{C}_f\) la courbe représentative dans un repère et \(\mathscr{T}\) la tangente à \(\mathscr{C}_f\) de la fonction \(f\) au point A d'abscisse 0.
 - Déterminer une équation de la tangente T.
 - b. On admet que la tangente T recoupe la courbe \(\mathscr{C}_f \) au point P d'abscisse a strictement positive. À l'aide de votre calculatrice, donner un encadrement de a au dixième près.

Exercice 2 5 points

On modélise la diffusion dans le sang d'un médicament de 1 gramme par intraveineuse (fonction f_1 , courbe représentative C_1) ou par voie orale (fonction f_2 , courbe représentative C_2) pendant une durée de 10 heures.

Plus précisément :

- f₁(t) modélise la proportion du médicament dans le sang à l'instant t, où t est le temps en heure après injection par intraveineuse;
- f₂(t) modélise la proportion du médicament dans le sang à l'instant t, où t est le temps en heure après administration par voie orale.

Pour tout réel t de l'intervalle [0; 10], on admet que

$$f_1(t) = e^{-0.57t}$$
 et $f_2(t) = 1.75te^{-t}$.

Les courbes C_1 et C_2 de f_1 et f_2 sont représentées ci-dessous.

- 1. Injection par voie intraveineuse
 - a. Déterminer le sens de variation de la fonction f₁.
 - **b.** Résoudre graphiquement $f_1(t) < 0,1$. Interpréter la réponse dans le contexte.
- 2. Administration par voie orale

On note f_2' fonction dérivée de la fonction f_2 .

- **a.** Montrer que, pour tout t de [0; 10], $f_2'(t) = 1,75(1-t)e^{-t}$.
- b. Construire le tableau de variations de la fonction f₂.
- c. À quel instant t la proportion de médicament dans le sang est-elle la plus élevée?